Approximation Schemes for Capacitated Geometric Network Design
نویسندگان
چکیده
We study a capacitated network design problem in geometric setting. We assume that the input consists of an integral link capacity k and two sets of points on a plane, sources and sinks, each source/sink having an associated integral demand (amount of flow to be shipped from/to). The capacitated geometric network design problem is to construct a minimum-length network N that allows to route the requested flow from sources to sinks, such that each link in N has capacity k; the flow is splittable and parallel links are allowed in N . The capacitated geometric network design problem generalizes, among others, the geometric Steiner tree problem, and as such it is NP-hard. We show that if the demands are polynomially bounded and the link capacity k is not too large, the single-sink capacitated geometric network design problem admits a polynomial-time approximation scheme. If the capacity is arbitrarily large, then we design a quasi-polynomial time approximation scheme for the capacitated geometric network design problem allowing for arbitrary number of sinks. Our results rely on a derivation of an upper bound on the number of vertices different from sources and sinks (the so called Steiner vertices) in an optimal network. The bound is polynomial in the total demand of the sources.
منابع مشابه
Reliable Designing of Capacitated Logistics Network with Multi Configuration Structure under Disruptions: A Hybrid Heuristic Based Sample Average Approximation Algorithm
We consider the reliable multi configuration capacitated logistics network design problem (RMCLNDP) with system disruptions, concerned with facilities locating, transportation links constructing, and also allocating their limited capacities to the customers in order to satisfy their demands with a minimum expected total cost (including locating costs, link constructing costs, as well as expecte...
متن کاملA stochastic network design of bulky waste recycling – a hybrid harmony search approach based on sample approximation
Facing supply uncertainty of bulky wastes, the capacitated multi-product stochastic network design model for bulky waste recycling is proposed in this paper. The objective of this model is to minimize the first-stage total fixed costs and the expected value of the second-stage variable costs. The possibility of operation costs and transportation costs for bulky waste recycling is considered ...
متن کاملACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem
The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...
متن کاملA Simulated Annealing Algorithm for Unsplittable Capacitated Network Design
The Network Design Problem (NDP) is one of the important problems in combinatorial optimization. Among the network design problems, the Multicommodity Capacitated Network Design (MCND) problem has numerous applications in transportation, logistics, telecommunication, and production systems. The MCND problems with splittable flow variables are NP-hard, which means they require exponential time t...
متن کاملApproximation Algorithms for Buy-at-Bulk Geometric Network Design
The buy-at-bulk network design problem has been extensively studied in the general graph model. In this paper we consider the geometric version of the problem, where all points in a Euclidean space are candidates for network nodes. We present the first general approach for geometric versions of basic variants of the buy-at-bulk network design problem. It enables us to obtain quasi-polynomial-ti...
متن کامل